An Automated Bioreactor Sampling Solution for Assuring On-line PAT Analytical Fidelity

2014 IFPAC Annual Meeting

William Miller, Lucas Schimmelpfenning, Paul Strand & Michael Biksacky

January 2014
Outline

• Automated Bioreactor Sampling
• Seg-Flow Technology Overview
• Analytical Performance Case Studies
 – Methodology & Acceptance Criteria
 – YSI 2700 Biochemistry Analyzer
 – Nova BioProfile 400 Analyzer
 – Vi-CELL XR Cell Analyzer
• Summary
• Global PAT solutions provider for bio & other processing industries
 • Upstream process focus
• Enabling technologies for on-line process analytics & data management
• Headquartered in Madison, WI USA
Automated Bioreactor Sampling

• Criteria
 – not compromise the bioreactor’s sterile environment
 – establish connectivity of process systems
 – facilitate a scale-independent strategy
 – seamlessly integrate the real-time data into the process management system
 – provide rapid and precise analysis that performs as good as or better than the manual off-line analytical method
Technology Overview
Seg-Flow Technology

Sample up to 8 Bioreactors
Integrate up to 16 Accessory Pumps
Feed Control

Sample Collection & Dilution
Biochemistry Analyzers
Sample delivery to 4 Analyzers/Fraction Collectors
HPLC
Data Acquisition
Cell Counters

Sample Retention & Off-line Analytics
Nutrient & Metabolite Monitoring
Amino Acid & Product Quantity
Cell Density & Viability

Data transfer to SCADA via OPC

User Defines Analytical & Bioreactor Interface

Interconnectivity to Existing Instrumentation
Case Studies
Methodology

• Objectives:
 – Does the Seg-Flow-integrated instrument perform as good as or better than the manufacturer’s precision specifications?
 • Is the analytical fidelity preserved with the Seg-Flow system?
 – Is the Seg-Flow automated on-line analytical method comparable to the manual off-line analytical method?
Methodology

• **Evaluation:**
 – Evaluate the integrated analytical performance of three analyzers commonly used with bioreactor culture monitoring.
 • YSI® 2700 Select Biochemistry Analyzer
 • Nova® BioProfile® 400 Analyzer
 • Vi-Cell® XR Cell Analyzer
Methodology

• General Scheme:

 – Precision Evaluation
 • Within run evaluation per manufacturer’s specifications

 – Comparability Evaluation
 • Evaluate ≥ 50% of the instrument’s measurement range

 – CDM/reagent standards used in lieu of live culture
 • Assure QC of analyte concentrations
 • 0.25 – 5.0L WV: serial dilutions to attain measurement ranges
Methodology

• **General Scheme:**

 – Analytical instruments QC’d prior to evaluation
 • Manufacturer’s linearity, QC standards used

 – Seg-Flow/single instrument integration
 • Sample cycle – purge, analysis & system cleaning
 – precision & comparability studies
 • Manual sample analysis performed ≤ 5 minutes of Seg-Flow system analysis
 – comparability study
Acceptance Criteria

• Performance standards based on:

 • Instrument manufacturer’s precision specifications

 • Accepted practices and standards
Acceptance Criteria

• Precision:

 • 2-point linearity check

 • Coefficient of variation (%CV) (YSI/Nova)
 – % CV ≤ the manufacturer’s within run specification
 – compares the dispersion or variation in groups of measurements
 • $\delta/\mu \times 100\%$

 • Concentration average accuracy (Vi-CELL XR)
 – Average accuracy within ± 3.0% of reference standard
Acceptance Criteria

• **Accuracy:**

 • Qualitative evaluation of Seg-Flow System
 – No analytical errors due to Seg-Flow sample delivery
 • Ensure prescribed sample volume and timing are achieved
Acceptance Criteria

• Comparability:

 • Linear Regression Analysis
 – Determine statistical relationship of two analytical methods
 – Correlation coefficient
 • $R \geq 0.98^3$
 • Strong positive linear correlation should exist between the Seg-Flow (automated) & manual analytical methods
 – Slope
 • 95% CI should include the value of 1.0
 • slope = 1.0 (perfect)
 – Intercept
 • 95% CI should include the value of 0.0
 • intercept = 0 (perfect)

Seg-Flow Integration: YSI® 2700 Biochemistry Analyzer

Analytes
- D-Glucose
- L-Lactate
- L-Glutamine
- L-Glutamate
YSI 2700 Measurement Ranges & Precision Specifications

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Measurement Range</th>
<th>Evaluated Analytical Range</th>
<th>CV (%)</th>
<th>Sample size (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Glucose</td>
<td>0 – 25.0 g/L</td>
<td>0.5 – 15.0 g/L</td>
<td>2.0</td>
<td>10</td>
</tr>
<tr>
<td>L-Lactate</td>
<td>0 - 2.7 g/L</td>
<td>0.2 – 5.0 g/L</td>
<td>2.0</td>
<td>10</td>
</tr>
</tbody>
</table>
Seg-Flow/YSI 2700 Results

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Number of Samples Analyzed</th>
<th>Theoretical concentration (g/L)</th>
<th>Measured concentration (g/L) (µ ± δ)</th>
<th>CV (%)</th>
<th>YSI CV Spec. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Glucose</td>
<td>10</td>
<td>2.00</td>
<td>2.03 ± 0.04</td>
<td>1.98</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10.00</td>
<td>10.01 ± 0.20</td>
<td>1.96</td>
<td>2.00</td>
</tr>
<tr>
<td>L-Lactate</td>
<td>10</td>
<td>0.70</td>
<td>0.64 ± 0.01</td>
<td>1.56</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2.70</td>
<td>2.74 ± 0.05</td>
<td>1.94</td>
<td>2.00</td>
</tr>
</tbody>
</table>

- **YSI 2700 precision linearity demonstrated**
 - %CV acceptance criteria met
- **Seg-Flow sample delivery accuracy achieved**
 - No analytical errors due to sample delivery
Seg-Flow/YSI 2700 Results

Glucose

- **210 mm FISP Probe**
- **Dip Tube**

Lactate

- **210 mm FISP Probe**
- **Dip Tube**

Glutamate

- **210 mm FISP Probe**
- **Dip Tube**

Glutamine

- **210 mm FISP Probe**
- **Dip Tube**
Seg-Flow/YSI 2700 Results

Seg-Flow/YSI 2700 Statistical Comparability

<table>
<thead>
<tr>
<th>Analyte</th>
<th>FISP Sampling Probe</th>
<th>Dip Tube</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>Slope (95% CI)</td>
</tr>
<tr>
<td>D-Glucose</td>
<td>1.00</td>
<td>1.007 (0.994 to 1.020)</td>
</tr>
<tr>
<td>L-Lactate</td>
<td>1.00</td>
<td>0.998 (0.985 to 1.010)</td>
</tr>
<tr>
<td>L-Glutamate</td>
<td>1.00</td>
<td>0.985 (0.973 to 0.997)</td>
</tr>
<tr>
<td>L-Glutamine</td>
<td>1.00</td>
<td>0.988 (0.969 to 1.007)</td>
</tr>
</tbody>
</table>

- **Comparability demonstrated for Seg-Flow & manual analytical methods**
 - Acceptance criteria met:
 - $R \geq 0.98$
 - Slope & Intercept within 95% CI
 - Irrespective of sampling mechanism used
Seg-Flow Integration: Nova BioProfile 400

Analytes
- Glucose
- Lactate
- Glutamine
- Glutamate
- Ammonium
- pO2
- pCO2
- pH
- Potassium
- Sodium
- Osmolality
Nova BP 400 Measurement Ranges & Within Run Precision Specifications

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Measurement Range</th>
<th>Evaluated Analytical Range</th>
<th>CV (%)</th>
<th>Sample size (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Glucose</td>
<td>0.2 – 15.0 g/L</td>
<td>0.5 – 15.0 g/L</td>
<td>5.0</td>
<td>20</td>
</tr>
<tr>
<td>L-Lactate</td>
<td>0.2 – 5.0 g/L</td>
<td>0.2 – 5.0 g/L</td>
<td>5.0</td>
<td>20</td>
</tr>
<tr>
<td>L-Glutamate</td>
<td>0.2 – 6.0 mmol/L</td>
<td>0.2 – 5.0 mmol/L</td>
<td>5.0</td>
<td>20</td>
</tr>
<tr>
<td>pO2</td>
<td>0 – 800 mmHg</td>
<td>170 – 230 mmHg</td>
<td>5.0</td>
<td>20</td>
</tr>
<tr>
<td>pCO2</td>
<td>3 – 300 mmHg</td>
<td>18 – 50 mmHg</td>
<td>5.0</td>
<td>20</td>
</tr>
</tbody>
</table>
Seg-Flow/Nova 400 Results

• **Nova 400 precision acceptance criteria met**
 – Precision linearity demonstrated

• **Seg-Flow sample delivery accuracy achieved**
 – No analytical errors due to sample delivery

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Number of Samples Analyzed</th>
<th>Theoretical concentration</th>
<th>Measured concentration ($\mu \pm \delta$)</th>
<th>CV (%)</th>
<th>Nova CV Spec. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Glucose</td>
<td>20</td>
<td>8.0 g/L</td>
<td>8.1 ± 0.1</td>
<td>1.6</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>15.0 g/L</td>
<td>15.0 ± 0.4</td>
<td>2.5</td>
<td>5.0</td>
</tr>
<tr>
<td>L-Lactate</td>
<td>20</td>
<td>2.5 g/L</td>
<td>2.4 ± 0.1</td>
<td>2.1</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5.0 g/L</td>
<td>4.7 ± 0.1</td>
<td>2.9</td>
<td>5.0</td>
</tr>
<tr>
<td>L-Glutamate</td>
<td>20</td>
<td>2.5 mmol/L</td>
<td>2.3 ± 0.1</td>
<td>2.7</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>4.5 mmol/L</td>
<td>4.3 ± 0.1</td>
<td>2.9</td>
<td>5.0</td>
</tr>
<tr>
<td>pO2</td>
<td>10</td>
<td>185 mmHg</td>
<td>185.7 ± 2.7</td>
<td>0.9</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>220 mmHg</td>
<td>220.5 ± 4.5</td>
<td>2.0</td>
<td>5.0</td>
</tr>
<tr>
<td>pCO2</td>
<td>10</td>
<td>18 mmHg</td>
<td>18.2 ± 0.3</td>
<td>1.9</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>48 mmHg</td>
<td>47.5 ± 0.8</td>
<td>1.8</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Seg-Flow/Nova 400 Results

- **Glucose**
 - Off-line Glucose (g/L) vs. SegFlow On-line Glucose (g/L)
 - Data points for 210 mm FISP Probe and Dip Tube

- **Lactate**
 - Off-line Lactate (g/L) vs. SegFlow On-line Lactate (g/L)
 - Data points for 210 mm FISP Probe and Dip Tube

- **Glutamate**
 - Off-line Glutamate (mmol/L) vs. SegFlow On-line Glutamate (mmol/L)
 - Data points for 210 mm FISP Probe and Dip Tube

- **Glutamine**
 - Off-line Glutamine (mmol/L) vs. SegFlow On-line Glutamine (mmol/L)
 - Data points for 210 mm FISP Probe and Dip Tube
Seg-Flow/Nova 400 Results

- **pO2**:
 - Off-line pO2 (mm Hg) vs. SegFlow On-line pO2 (mm Hg)
 - Linear trend observed

- **pCO2**:
 - Off-line pCO2 (mm Hg) vs. SegFlow On-line pCO2 (mm Hg)
 - Linear trend observed

- **Ammonium**:
 - Off-line Ammonium (mmol/L) vs. SegFlow On-line Ammonium (mmol/L)
 - Linear trend observed
 - 210 mm FISP Probe
 - Dip Tube
Seg-Flow/Nova 400 Results

Seg-Flow/Nova BP 400 Statistical Comparability

<table>
<thead>
<tr>
<th>Analyte</th>
<th>FISP Sampling Probe</th>
<th>Dip Tube</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>Slope (95% CI)</td>
</tr>
<tr>
<td>D-Glucose</td>
<td>0.99</td>
<td>0.994 (0.928 to 1.059)</td>
</tr>
<tr>
<td>L-Lactate</td>
<td>0.99</td>
<td>0.942 (0.874 to 1.009)</td>
</tr>
<tr>
<td>L-Glutamate</td>
<td>0.99</td>
<td>0.994 (0.856 to 1.131)</td>
</tr>
<tr>
<td>L-Glutamine</td>
<td>1.00</td>
<td>1.048 (0.984 to 1.113)</td>
</tr>
<tr>
<td>Ammonium</td>
<td>1.00</td>
<td>1.044 (0.994 to 1.093)</td>
</tr>
<tr>
<td>pO2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pCO2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- **Comparability demonstrated for Seg-Flow & manual analytical methods**
 - Acceptance criteria met:
 - \(R \geq 0.98 \)
 - Slope & Intercept within 95% CI
 - Irrespective of sampling mechanism used
Seg-Flow Integration: Vi-CELL® XR Cell Analyzer

Analytes
- VCC
- TCC
- % Viability
- Total cell count
- Viable cell count
- μ Cell Diameter
- μ Compactness
- Aggregation Rate
- Cell Imaging

- 12 hour test duration w/ 30 minute sample frequency
- # samples represent typical 2 - 4 week cell culture sampling (1 - 2/day)
- Cell concentration calibration beads used for analysis
Seg-Flow/Vi-CELL XR Results

Mean TCC, VCC and % Viability

• **Vi-CELL XR precision acceptance criteria met**
 – Concentration Average Accuracy: ± 3.0% (n = 20)
 • ± 2.4% average concentration accuracy for VCC (n=25)
 • ± 2.0% average concentration accuracy for TCC (n = 25)
 • ± 0.5 % difference observed for % viability (n = 25)

• **Seg-Flow sample delivery accuracy achieved**
 – No analytical errors due to sample delivery
Seg-Flow/Vi-CELL XR Results

Comparability demonstrated for Seg-Flow & manual analytical methods
- Acceptance criteria met:
 - $R \geq 0.98$
 - Slope & Intercept within 95% CI

<table>
<thead>
<tr>
<th>Analyte</th>
<th>R</th>
<th>Slope (95% CI)</th>
<th>Intercept (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>0.98</td>
<td>1.047 (0.982 to 1.112)</td>
<td>-0.01806 (-0.05543 to 0.01931)</td>
</tr>
<tr>
<td>TCC</td>
<td>0.98</td>
<td>1.034 (0.982 to 1.085)</td>
<td>-0.01040 (-0.04090 to 0.02009)</td>
</tr>
</tbody>
</table>
Summary

• Analytical fidelity (precision) preserved for each Seg-Flow-integrated analyzer
 – YSI 2700 Biochemistry Analyzer
 – Nova BioProfile 400 Analyzer
 – Vi-CELL XR Cell Analyzer

• Seg-Flow automated and manual analytical methods are statistically comparable
 – Fully automated system for delivering precise, reliable analyses
 • cell parameters, nutrients, metabolites and product

• Enabling on-line PAT solution for real-time bioreactor culture monitoring
 – Achieve deeper process understanding & increase process efficiency
Acknowledgements

Jayson Preston
Ashley Fisher

Matthew Rhyner, PhD
Lena Lee
Ara Kulhanjian
Thank You!

Contact us:

Flownamics, Inc.
3025 South Stoughton Road
Madison, WI 53716

phone: 800.932.6989
 608.240.1604

e-mail: contact@flownamics.com
web: www.flownamics.com