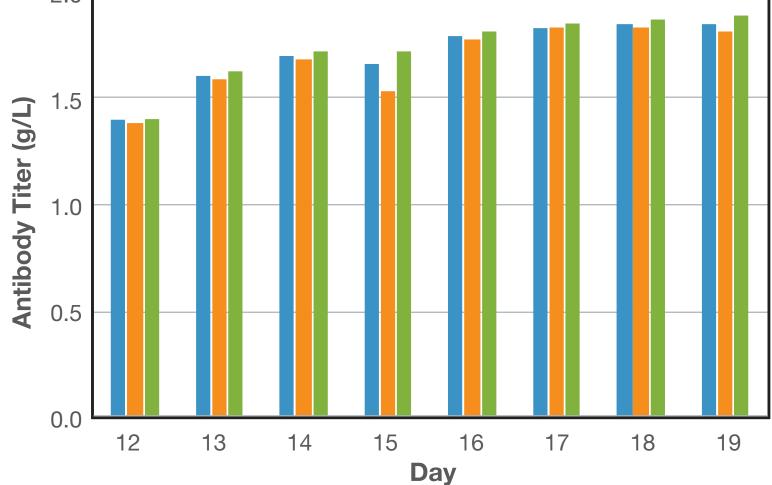


A Novel Approach to Real Time Monitoring of Antibody Titer in a Fed-Batch Bioreactor Run


R. Pagila, N. Patel, D. Quach, S. Karim, and V. Rose, Ph.D. Aragen Bioscience, Morgan Hill, CA, USA

Abstract

In most cases, the titer of an antibody being expressed in a stirred bioreactor is measured offline. The process involves removing an aliquot aseptically from the bioreactor, centrifuging the aliquot and analyzing the resulting supernatant. The supernatant is analyzed either by bio-layer interferometry (BLI), Protein A HPLC or ELISA. Such an approach may limit throughput, workflow and efficiency. Aragen is evaluating a prototype chromatography-based device that is directly connected to a bioreactor. The compact device automatically measures the titer of an antibody being expressed from a stable DG44 CHO clone for 19 days, starting from day 3, post-inoculation. Results of this novel approach to real-time monitoring of antibody titer in a fed-batch stirred bioreactor run are presented below.

Reproducibity of Replicates

Bioreactor Conditions

Cells

• DG44 CHO stable clone expressing a human IgG antibody.

Inoculation

- Inoculum: 300 mL in 2 L flasks with 2–3 X 10⁶ cells/mL at 96% to 98% viability
- Inoculation Density: 0.5 X 10⁶ cells/mL
- Seed Train Media: CD Opti CHO + 6 mM L-Glutamine + 0.1% F68
- Production Media: BalanCD CHO Growth A

Feeding

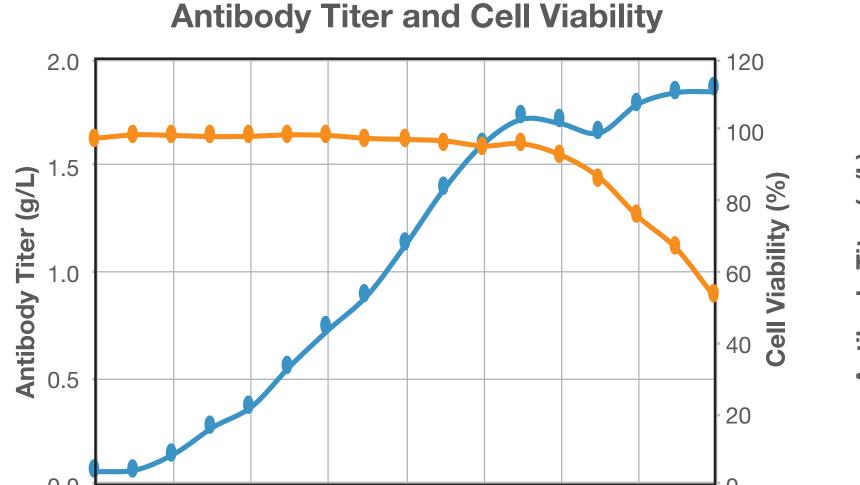
- Balance Feed 3 added to 15% on D3, D6 and D9.
- Glucose feed when needed to prevent depletion.

Analysis

- Beckman Coulter Vi-Cell XR for cell density and cell viability.
- Nova Biochemical BioProfile FLEX2 for pH and metabolites.

Bioreactor Parameters

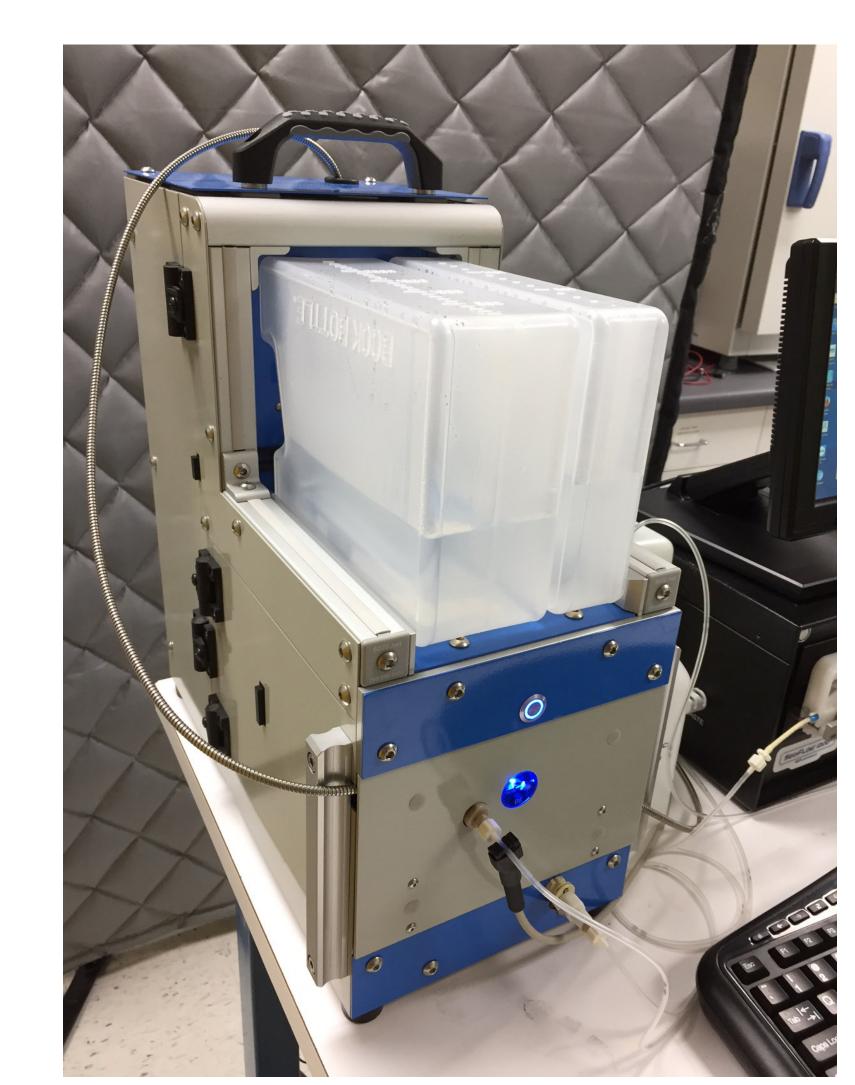
- Working Volume: 1.0 L
- Temperature: 37°C
- Dissolved Oxygen: 30%
- Constant Air Sweep: 0.1 L/min
- pH: 7 ± 0.2
- pH Control: CO₂ and 0.5 N NaOH
- Agitation: 250 rpm


Calibration Curve Graph

Evaluation Results

- A well-characterized human IgG was used as a calibrant.
- Starting from 5 g/L down to 0.07 g/L, an R^2 of 0.999 was achieved with this device.
- CHO cell lines whose titers go up to 5 g/L in a bioreactor run can be monitored in real time.

Reproducibility of Replicates


- Starting on day 12, while the device was on manual sampling mode, three consecutive measurements were performed.
- After the 3rd measurement was taken, the device was returned to automatic sampling mode.

Antibody Titer and Cell Density

Real Time Antibody Titer Prototype Device

- The chromatographic device contains pumps, valve, detector, analytical module and buffer reservoirs, all built into a small footprint:
- Height: 17" (43.2 cm), with handle: 18 ¹/₄" (46 cm)
- Width: 8" (20 cm)
- Depth: 16" (40.6 cm)
- Weight: 19.5 kg (full buffer reservoirs)
- A separate online sampling instrument withdraws a user-defined volume of cellfree sample directly from the bioreactor and delivers it to the chromatographic device.
- The antibody in the cell-free sample is analyzed chromatographically and the internal PC displays the titer results of the antibody.

Antibody Titer Graphs

- Antibody titer was measured in real time every 6 hours and the average of three measurements per day are plotted.
- The relationship of antibody titer to cell density and viability is shown above.

Summary & Conclusions

- The prototype device automatically and directly measured the titer of the human IgG antibody being expressed from a stable CHO cell line during the fed batch bioreactor run.
- The device measured the titer from 15 μ L of cell-free sample.
- The device eliminated the tedious need to withdraw and to prepare a sample from the bioreactor for titer analysis by alternate methods.
- Along with an online sampling instrument, the device can be programmed to perform numerous titer measurements automatically during the course of a bioreactor run.

- The device measures the titer without any dilution or re-calibration during the bioreactor run.
- The sampling rate and the analysis of the cell-free sample are programmed into the internal PC, creating an automated, hands-free real time measuring of antibody titer from the bioreactor.
- The device can be accessed remotely by Wi-Fi so it can be monitored while running unattended.
- If an online sampling instrument is capable of withdrawing cell-free samples from multiple bioreactors, the device can automatically and efficiently measure the titers from those bioreactors.
- The device can accurately measure titers of CHO cell lines whose titers goes up to 5 g/L during a bioreactor run.
- The device can be an invaluable tool for measuring critical process parameter (CPP) in real time during the manufacturing of an antibody for therapeutic use.

info@aragenbio.com

Aragen Bioscience, Inc. Morgan Hill, CA 95037, USA

www.aragenbio.com