

Proudly Operated by Battelle Since 1965

U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) 2017 Project Peer Review

Advanced Supervisory Control and Data Acquisition (SCADA) for Biochemical Process Integration

3/8/2017 Biochemical Platform Review

Jim Collett Pacific Northwest National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

The Challenge: Fed-batch bioconversion of **highly variable biomass feedstocks** will require advanced supervisory control and data acquisition (SCADA) systems for **cost-competitive production of hydrocarbon biofuels and chemicals**.

The Goal: We will work with industrial partners on technology to market transfer of **Process Analytical Technologies (PAT) for biorefinery SCADA systems** to improve process control, reduce manual sampling, and increase product quality.

The Outcome: Bioenergy startups and established biorefineries will have access to proven PAT equipment and methods that integrate seamlessly with SCADA systems to enable profitable scale-up and informative scale-down of industrial bioprocesses.

Quad Chart Overview

Timeline

Project start date: 10/1/2015 Project end date: 9/30/2017

Budget

	FY 15 Costs	FY 16 Costs	Total Planned Funding (FY 17- Project End Date)
DOE Funded	\$300 K	\$300 K	\$300 K
Project Cost Share (Comp.)*	\$30 K		

Partners

- Bend Research (small business; bought by Capsugel during project)
- Sartorius Stedim, N. A.
- Flownamics (small business)

MYPP Barriers Addressed

Ct-A. Feedstock Variability

Achieved accurate, real-time tracking of biocatalyst growth on multiple feedstock lots with suspended lignin loadings up to 4.25% using dielectric spectroscopy (DS).

Ct-H. Efficient Upgrading of Sugars to Fuels & Chemicals

Demonstrated **automated**, **PID control of fed-batch bioconversion of hydrolysate to hydrocarbons** using online near-infrared spectroscopy (NIRS)

Ct-J. Conversion Process Integration

Worked with bioprocess manufacturers to develop a "super-stock" 30-liter bioreactor to demonstrate **OPC-networked PAT systems** that directly integrate with biorefinery SCADA systems to improve process control and reduce manual sampling.

1 - Project Overview

Critical Success Factors:

- Use SCADA-compatible, commercial-off-the-shelf (COTS) equipment.
- Achieve real-time tracking and control of critical process parameters (CPPs).
- Ensure results are generalizable for a variety of biocatalyst organisms.

1 - Project History

- FY 14 (seed year)
 - **DS validated** in high-solids, pretreated corn stover (PCS) hydrolysate.
 - Bend Research evaluates **frequency scanning DS** for quantifying lipids.
- FY 15
 - Sartorius Stedim and PNNL create **preliminary NIRS calibration models** for glucose, xylose, ammonium, and cell mass.
 - NIRS and DS data integrated with industrial-class SCADA network via OPC.
 - 30 L bioreactor equipped with Flownamics automated sampling system.
- **FY 16**
 - **Go/No-Go milestone achieved** (50% reduction in manual sampling).
 - NIRS-based PID control of fed-batch bioconversion of PCS hydrolysate.
- FY 17 (ongoing)
 - Raman spectroscopy for intracellular lipid quantification during bioconversion.
 - PAT outreach Fungal Partners Review Board, ABPDU, INL, NREL.

2 – Approach (Management)

Proudly Operated by Baffelle Since 1965

- Standard Project Management Good Practices
 - Statement of work and how it relates to DOE goals
 - AOP Project Management Plan
 - Quarterly milestones
 - Go/No Go decision point
- Frequent project communications
 - Teleconferences with BETO platform leads
 - Quarterly formal reporting to BETO
 - Site visits by industrial collaborators
- Draw on deep talent pool in analytical sciences, process control, machine learning, and chemical engineering at PNNL

2 – Approach (Technical)

Experiments designed for synergy with Fungal Genomics and BC Analysis AOPs. Test case: *Lipomyces starkeyi* bioconversion of PCS to lipids.

Above – **Hydrolysate conditioning and bioconversion operations** in NREL sugars-to-hydrocarbons 2017 design case

L. starkeyi oleaginous yeast accumulate up to 70% of dry cell mass as lipids during N limitation

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

2 – Approach (Technical)

Bioconversion optimization challenges in fed-batch cultivation of oleaginous yeast

- Nitrogen must be limited to induce high-yield lipid synthesis.
- Plant nitrogen in hydrolysate feed stream may inhibit lipid synthesis.
- Microbial consumption of glucose vs. xylose must be balanced.
- Potential accumulation of lignin solids and metabolic inhibitors over time.
- Lot-to-lot variation in feedstock composition and high spectral background in hydrolysate may confound PAT approaches.

Table 1. Corn Stover Compositional Variation*						
Parameter	Minimum	Maximum				
Ash	0.8%	6.6%				
Xylan	14.8%	22.7%				
Lignin	11.2%	17.8%				

*500 samples were taken from 47 locations over three years *Cellulose, 2009. 16(4): p. 621-639*

Lignin solids and *L. starkeyi* cells in in PCS hydrolysate

3 – Technical Progress Dielectric Spectroscopy in high-solids hydrolysate

DS capacitance predicted increases in culture dry weight with >90% confidence in a bioreactor culture of *L. starkeyi* grown in the presence of 4.25% PCS insoluble solids.

Right – Samples from a carboy of harvested spent PCS media showing suspended lignin solids mixed with *L. starkeyi* cell mass.

DS also showed promise in tracking cell mass in cultivations of filamentous fungi on PCS.

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

ABORATORY
Battelle Since 1965

Near-infrared spectroscopy (NIRS) in synthetic growth media

Proudly Operated by Baffelle Since 1965

Sartorius in situ NIR Spectrometer with OPC data output for direct integration into biorefinery SCADA systems.

Initial NIRS calibration models constructed in SX-Plus chemometrics software showed promise by tracking CPPs in cultivation of *L. starkeyi* in synthetic media.

Automated sampling enables rapid NIRS calibration model construction

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

8

Flownamics 8000i system for highfrequency, 24-hour, cell-free sampling.

Flownamics was featured at the 2015 **American Energy** Manufacturing **Competiveness Summit**

Go/No-Go Milestone: "Can NIRS supplant 50% of manual sampling requirement?" achieved Q2 of FY16.

NIRS estimates of glucose and xylose during PCS bioconversion vs. offline assays 30

 Xvlose NIR Estimate(Sartorius) Dielectric Capacitance (cells mass growth) hydrolyzed PCS supplemented with minimal nutrients.

NIRS enables automated fed-batch control of bioconversion of PCS hydrolysate

20-liter bioreactor cultivation of *Lipomyces starkeyi* on pretreated corn stover hydrolysate.

FY17 (ongoing) – Process Raman Spectroscopy for Intracellular lipids quantification Process Raman Spectroscopy for Pacific Northwest NATIONAL LABORATORY Produkt Operated by Ballelie Since 1965

We are working with Marqmetrix, a University of Washington spin-off company, to adapt their **Process Raman spectroscopy system to measure intracellular lipids** in oleaginous yeast during bioconversion.

Their **Raman BallProbe** uses a spherical sapphire lens that eliminates errors from focal length variability. The probe can continuously withstand pressures > 6000 psi and temperatures > 300°C.

L. Starkeyi cells with large, intracellular lipid droplets.

The BallProbe has been used to track glucose and ethanol during fermentative bioconversion of switchgrass hydrolysate. *Ewanick et al. Biotechnology for Biofuels 2013, 6:28*

FY17 (ongoing) – Open-source database for fused chemometric data and machine learning

Proudly Operated by Battelle Since 1965

4 – Relevance

Proudly Operated by Baffelle Since 1965

ENERGY Energy Efficiency & Renewable Energy

Process Integration and Carbon Efficiency Workshop Summary Report

Summary Report from the June 11-12, 2014, Workshop in Lakewood, Colorado

December 2014

http://www.energy.gov/sites/prod/files/2014/12/f19/process_integration_workshop_report_dec_2014.pdf

This project directly addresses these **key recommendations made by industry stakeholders** at the 2014 PRINCE workshop hosted by BETO:

- Working with equipment manufacturers to develop COTS equipment for biomass conversion that is efficient and can be predictably scaled up or down.
- Determining specifications for process integration, including development of online monitoring capabilities and analytical tools that can be used throughout the biorefinery.
- Tailoring technologies to expected particle sizes.
- Optimization focused on industrially relevant organisms.

Summary

<u>Overview:</u> The goal of this project is to develop **Process Analytical Technologies** (PAT) that optimize bioconversion of biomass feedstocks with variable compositions and high levels of suspended solids.

<u>Approach:</u> Dielectric, Near Infrared, and Raman Spectroscopy are being adapted into a set of industrial PAT tools and methods using COTS equipment and software that will directly integrate into biorefinery SCADA systems.

Technical Accomplishments:

- DS validate for tracking cell mass growth in high-solids PCS hydrolysate
- Validated NIRS calibration models of Critical Process Parameters for bioconversion of PCS hydrolysate to hydrocarbons that could enable a 50% reduction in manual sampling and analysis
- Demonstrated NIRS-enabled PID control of fed-batch bioconversion of PCS hydrolysate to hydrocarbons

Acknowledgements

Proudly Operated by Battelle Since 1965

Brandon Downey Jeff Breit

Lisa Graham

Dan Kopec Kevin Filipiak

<u>Advanced SCADA</u>: Jim Collett, Erik Hawley, Richard Zheng, Brook Remington

Related Projects

<u>Fungal Genomics</u>: Jon Magnuson, Mark Butcher, Jim Collett, Dave Culley, Ziyu Dai, Shuang Deng, Beth Hofstad, Ellen Panisko, Kyle Pomraning, Swarnendu Tripathi

<u>Biochemical Analysis</u>: Sue Jones, Aye Meyer, Yunhua Zhu, Jim Collett, Mark Butcher

GY Energy Efficiency & BIOENERGY TECHNOLOGIES OFFICE

Proudly Operated by **Battelle** Since 1965

Additional Slides

Laboratory SCADA Integration Plan

Proudly Operated by Baffelle Since 1965

NIRS tracks cell mass growth in PCS

Pacific Northwest

Proudly Operated by Battelle Since 1965

pretreated corn stover (PCS) containing 2-3% total sugars (blue line = NIR calibration model; red line = offline sample regression model).

Preliminary NIR Performance in Pretreated Corn Stover Media

Parameter	Calibration	Prediction	Relative Standard		
	Set Count	Set Count	Error of Prediction		
Dry Cell Mass	32	15	3.25%		
Glucose	49	21	8.49%		
Xylose	70	34	10.25%		
Ammonium	73	33	10.04%		

NIRS tracks glucose in PCS containing suspended lignin solids

Culture Age (h)

Proudly Operated by Battelle Since 1965

NIRS enables automated fed-batch control of bioconversion of PCS hydrolysate

Pacific Northwest NATIONAL LABORATORY Proudly Obstated by Ballelle Since 1965

Near-infrared Spectroscopy (NIRS) enabled **PID control of automated, fed-batch cultivation** of *Lipomyces starkeyi* on PCS hydrolysate in a 30-liter bioreactor. Further refinement of chemometric models for glucose and xylose will facilitate tuning of PID control of fed-batch operations.

Sartorius SX-Server

Proudly Operated by Battelle Since 1965

9 SX-Server V2.10 Build 55.1405.2223 [SP1] - RESTRICTED US	ER - Battelle Corp., Richland W	A 99354, 24055001				
Units and Actions *				100	3.0 100	100 1000
Unit	Button I Detector temperature 3	NOT PRESSED 36.40°C	1 Spectra			
⊠ Logger NIR-Online®	System temperature System temperature Peltier temperature Peltier power	37.58°C		90	2.7 90	80 900
Hardware #1 5/N:24055001 ×	Measurement cycle (Absolute noise 2	0.286s 2.3ADC		80	2.4 80	60 800
Application ¥	Derivative noise 2 Full SNR time 2 Count	2.5ADC 1.6s (1.8s) 39:38/00:03(658)		70	21 70	40 700
				60	1.8 60	20 600
				50	1.5 50	0 500
					12.40	20 400
				1	1.2 40	-20 400
				30	0.9 30	-40 300
				20	0.6 20	-60 200
				10		00 100
					0.3 10	-80 100
				- 0 %	0.0 0 OD °C	-100 0 % ms
	9 10 10 11 11 12					
			(1) Reference OUT 14			

SX-Plus for NIR Calibration Model Development

Proudly Operated by Battelle Since 1965

🔗 SX-P	lus V2.10 E	uild 55.1405.2	223 [SP1] ·	- Battelle Co	rp., Richland	I WA 99354,	24055001							
<u>F</u> ile <u>E</u> o	lit <u>V</u> iew	<u>P</u> roject <u>C</u> om	oute <u>H</u> elp										sart	orius
New PEROP	- 🖻 🖻	🗐 🔑 🕻	666	9										
Loading													Estimates	
Select	\Export\#	1.PCS.Journal.t	v										✓ .\Data\#2.PCS.Journal.xls (File9) ✓ .\Data\#3.PCS.Journal.xls (File10)	_
	Query1 (Y1 X	heck = True ylose 0 100 0.00	0										✓.\Data\#4.PCS.Journal.xls (File11)	
	File L File12 2	nit 4055001	1	ID's Targ 153 153	ets Obser 160	ervations	Range .0186-20.5	Record 5609 1-15, 2	s)-27, 31-42, 4	5-54, 56-76,	87-91, 10	0, 103, 116-128, 135-136, 138-151, 153-158, 160-168, 170-181, 185-188, 190-196, 198-207, 211, 218-222, 228-231	✓\Export\#1.PCS.Journal.tsv (File12) ✓\Export\#2.PCS.Journal.xts (File13)	
		SERVATIONS	FLETED		7 (4.	4%)						,,,,,,,,	✓ \Export \#3.PCS.Journal.xls (File14)	
VIC	VCVAD N		CED (V Outline	,							✓\Export\#4.PCS.Journal.xls (File15)	
0	100% 1	00% 4.6005	4.3996	12.0268 10.6	530								□ Selector	
1 2	19.64% 1 17.67% 1	8.71% 4.5669 5.99% 4.1850	4.3696 4.0106	11.7092 10.3 10.2887 8.94	314 12.0134, 47 12.0053	, 12.0135, 12	.0022, 12.00	37, 12.0050	, 12.0053 (12.	0038, 12.004	19)		Check = True (Query1)	
3 4	8.50% 9 6.09% 6	.29% 4.0283 .46% 3.1796	4.0099 9	9.8298 9.89 7.1007 6.98	34 12.0036, 21	, 12.0044, 12	.0045, 12.00	53					Composition = * (Query3)	
5	4.16% 4	.42% 3.0742 87% 2.9170	3.0613 6	5.7760 7.10 5.5929 7.57	20	(12.0184)							<pre></pre>	
7	2.43% 2	.60% 2.7268	2.6695	5.9204 6.66	73 12.0099	(12.0184)							✓ Aylose 0 100 0,000 (Y1) ✓ aparameter> <min> <max> <format> (Y2)</format></max></min>	
9	2.06% 2	.26% 2.3114	2.5639	5.9698 6.51	78 12.0115,	, 12.0184)	.0184)						Pretreat	
10	1.89% 2 1.73% 1	.09% 2.2166 .98% 2.1456	2.4615 6	5.9869 5.92 5.7988 5.75	62 12.0115, 52 12.0115	, 12.0180							✓ [#]# ⁻ (X) Spline2 [#]X1 [#]X2 [#]X3 1050 1650 10 (Treat1)	
12 13	1.57% 1 1.44% 1	.88% 2.0663 .80% 1.9934	2.3090	7.2135 5.91 7.1621 6.18	33 12.0115 43 12.0115	(12.0220) (12.0220)							Spline2 [#]X1 [#]X2 [#]X3 450 850 10 1050 1650 10 (Treat2)	
14	1.10% 1	43% 1.9634	2.2624	7.2359 5.77	78 12.0115	(12.0220)							Spline2 [#]X1 [#]X2 [#]X3 450 850 10 (Treat3)	
	V nos Datas	-	212720			, 12:011/							SNVT (Treat5)	
Factor	24055001	ei											Vavelengths	
1 2	4.5669/11. 4.1850/10.	7092 2887											SNRs	
3 4	4.0283/9.8 3.1796/7.1	298 007											WLCs Means	
s Ectimat	3 0742/6 7	760										V.17 52 V.22 20 Lini	Targets	
Estimat	es B30-11	-0 B30-11-1	B30-11-2	B30-11-3	B30-11-3	B30-11-4	B30-11-5	B30-11-6	B30-11-6	B30-11-7	B3	True : Xvlose - XLS - Factors:9	OSC Variations	
1	7.1943	5 8.11142	8.24418	8.35505	8.32948	8.14852	8.23697	8.72923	8.73697	8.83352	7.2		Model	
2	5.7681	2 5.74321	5.98390	6.24624	6.18616	5.70123	5.78650	6.58582	6.56590	6.51961	3.6	SEC=2.0682 R ² =0.798 Bias=0.0000 N=101 Control = 0.0000 = 0.000 = 0.0000 = 0.0000 = 0.0000 = 0.0000	XLS (Type)	
3	5.5384	5.24336	5.07625	5.22376	5.14348	5.08383	5.03648	4.67047	4.58095	4.38277	5.0	SEP=2.4783 R ² =0.0/1 Bids=0.2204 SEP*=2.4085 N=49	5 (CrossValidate)	
4	6.7817	2 7 77035	6 79117	7.42605	6.53366	7.41143	5.03404	2.69945	2.29498	1.95030	3.8		9 (Factors)	
6	4.3843	6.89523	5.99279	6.06700	5.67826	4.99874	4.89746	1.45099	1.40678	0.50690	9.3	E-17.000		
7	4.9334	6.15058	5.01656	5.04961	4.60702	4.08933	3.99613	0.85323	0.90493	0.14954	9.6		cnew deletes> (Delete2)	
8	6.8214	3 7.59579	5.87164	5.68395	4.93469	4.93494	4.92075	2.39764	2.69960	2.18783	9.0	E-15.000	Auto, True.Xylose,12.01ob,12.0230 (Delete3)	
9	5.6000	6.73777	4.89449	5.53801	4.61736	3.94142	4.36292	4.82501	4.83930	4.30846	6.2		Auto, True.Xylose,12.0019,12.0102 (Delete5)	
10	4.9408	3 7.03978	5.09982	5.82587	5.01970	4.26246	4.70545	4.99349	4.88918	4.14762	5.9		Auto, True.Xylose,12.0020,12.0186,12.0021 (Deleteb) <new deletes=""> (Delete7)</new>	
11	4 8540	2 0.35509 7 5.92012	4.60572	5.63234	4.51410	3 91977	4.05009	5.59711	5.66860	4 26144	7 :		Auto, True.Xylose,12.0022,12.0115,12.0180 (Delete8)	
13	4.0855	5.35360	4.53070	5.60449	4.33021	3.95943	4.40082	5.81496	5.99630	4.64292	6.0	E_11.000	Wavelengths Indexes	
14	5.4376	5.45364	4.86156	6.04283	4.70182	4.33288	4.44390	5.91115	6.07358	4.56854	6.7		Dates	
15	4.3278	6.30414	5.60549	6.72096	5.29008	5.00861	4.86548	5.50022	5.57249	3.80688	5.1		IDs Target	
													Observations	
													ObservationsZ Zoro	
													Center	
													Weights	
													Scale	
													Regressions	
													Scores	
													Scores Scaled	
													Mahalanobis Residuums	
												™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™™	Bias	
•											•	.000 2.000 4.000 6.000 8.000 10.000 12.000 14.000 16.000 18.000 20.000	Estimates	~
1000/														

Lipomyces starkeyi bioreactor kinetics

Proudly Operated by Battelle Since 1965

Pulsed fed-batch cultivation of *L.* starkeyi on 2% sugar (2:1 glucose/xylose) minimal medium in a 20-liter stirred tank bioreactor. The agitation rate was set at 600 RPM, the pH controlled at 5.5 via addition of 5 M KOH, and the DO maintained at 50% via variable aeration at 0.2-2.5 vvm.

Additional glucose was pulse-fed into the culture after ammonia was exhausted from the medium:

Hours after	Glucose
inoculation	added (g)
26.50	46
32.50	92
42.25	46
43.75	46
45.75	46
49.75	46
55.50	161
Total	483

FY14-15 Synthetic Biology FOA Project

Proudly Operated by Battelle Since 1965

Dielectric spectroscopy tracking of *Aspergillus nidulans* filamentous fungi grown on lactose MM in a 30-liter bioreactor

FY14-15 Synthetic Biology FOA Project

Dielectric spectroscopy tracking of Aspergillus nidulans during growth and synthesis of octotrienoic acid on hydrolyzed PCS in a 30-liter bioreactor

3 – Technical Accomplishments/ Progress/Results

FY15 Stretch Milestone: DS frequency scanning for tracking intracellular lipid content

L. starkeyi cells showing internal lipid droplets.

Possible electrode polarization during cell growth phase Only a subtle increase in signal from DS frequency scans during lipid synthesis

Next Step: Compare samples of bioreactor medium with and without cells to **quantify electrode polarization effects** during bioconversion.

DRESEARCH

ACHIEVE VALUE THROUGH SCIENCE

DS Frequency Scan Analysis

ACHIEVE VALUE THROUGH SCIENCE

Total cell mass and its electrical properties are primary factors

Dielectric increment ($\Delta \epsilon$) relates to "amount" of charging

$$\Delta \varepsilon = \frac{9PrC_m}{4\varepsilon_0}$$

Where: $\Delta \varepsilon = \text{Dielectric increment}$ **P = Biomass volume fraction** r = Representative cell radius **C_m=Specific membrane capacitance** ε_0 =permittivity of free space (constant)

Critical frequency (fc) relates to frequency dependence of charging

(stemming from electric characteristics of the population)

$$f_c = \frac{1}{2\pi r C_m \left(\frac{1}{\sigma_i} + \frac{1}{2\sigma_m} \right)}$$

Where:

f_c= Critical frequency

 σ_i = Intracellular conductivity

- σ_m = Medium conductivity
- r = Representative cell radius

C_m=**Specific membrane capacitance**

DS Frequency Scan Analysis

Proudly Operated by Battelle Since 1965

DS Frequency Scan Analysis

CAPSUGEL[®]

BEND RESEARCH

DS Electrode Polarization Effects

CAPSUGEL[®]

- Electrode polarization stems from the same phenomena producing the dielectric signal for particles
- The effect must be corrected for in order to obtain a meaningful curve

Davey C: The influence of electrode polarisation on dielectric spectra, with special reference to capacitive biomass measurements: (II) Reduction in the contribution of electrode polarisation to dielectric spectra using a two-frequency method. *Bioelectrochemistry Bioenerg* 1998, **46**:105–114.

Publications, Patents, Presentations, Awards, and Commercialization

Collett JR, PA Meyer, Y Zhu, ER Hawley, Z Dai, MG Butcher, and JK Magnuson. 2015. "Bioreactor performance data and preliminary biorefinery techno-economics for the production of distillate fuels via bioconversion of pretreated corn stover by Lipomyces starkeyi." Accepted for poster presentation at the 37th Symposium on Biotechnology for Fuels and Chemicals, San Diego, CA on April 27, 2015. PNNL-SA-107273.

Collett JR. 2015. "Process Analytical Technologies in the New Bioeconomy for Fuels and Chemicals." Presented by James R. Collett (Invited Speaker) at the Sartorius Upstream/Downstream Technology Forum, Foster City, CA on October 6, 2015. PNNL-SA-113501. Online Near Infrared and

Collett JR, AB Remington, Z Dai, BA Hofstad, MG Butcher, EA Panisko and JK Magnuson. 2017. "Online Near Infrared and Dielectric Spectroscopy for Real-Time Tracking of Critical Process Parameters for Bioconversion of Pretreated Corn Stover." Accepted for oral presentation at the 39th Symposium on Biotechnology for Fuels and Chemicals, San Francisco, CA, CA on May 2, 2017. PNNL-SA-123014.